A combined approach of array processing and independent component analysis for blind separation of acoustic signals
نویسندگان
چکیده
In this paper, two array signal processing techniques are combined with independent component analysis (ICA) to enhance the performance of blind separation of acoustic signals in a reflective environment. The first technique is the subspace method which reduces the effect of room reflection when the system is used in a room. Room reflection is one of the biggest problems in blind source separation (BSS) in acoustic environments. The second technique is a method of solving permutation. For employing the subspace method, ICA must be used in the frequency domain, and precise permutation is necessary for all frequencies. In this method, a physical property of the mixing matrix, i.e., the coherency in adjacent frequencies, is utilized to solve the permutation. The experiments in a meeting room showed that the subspace method improved the rate of automatic speech recognition from 50% to 68% and that the method of solving permutation achieves performance that closely approaches that of the correct permutation, differing by only 4% in recognition rate.
منابع مشابه
Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملBlind signal separation: statistical principles
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or ‘sources’ from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mutual independence between the signals. The weakness of the assumptions makes it a powerful approach but...
متن کاملAcoustic Source Separation: Fundamental Issues
Acoustic source separation aims at estimating the contribution of each acoustic source from the signals measured at an array of microphones. The measurement signals are usually mixtures of acoustic sources and some noise contributions. When mixtures are assumed to be linear instantaneous mixtures, they can be separated by the method known as blind source separation or independent component anal...
متن کاملBlind Signal Separation: Statistical Principles
| Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or`sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mutual independence between the signals. The weakness of the assumptions makes it a powerful approach bu...
متن کاملDoctoral Dissertation Blind Source Separation Based on Multistage Independent Component Analysis
A hands-free speech recognition system and a hands-free telecommunication system are essential for realizing an intuitive, unconstrained, and stress-free human-machine interface. In real acoustic environments, however, the speech recognition performance and a speech recording performance significantly degraded because we cannot detect the user’s speech with a high signal-to-noise ratio (SNR) ow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 11 شماره
صفحات -
تاریخ انتشار 2001